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Liquid polymorphism of simple fluids within a van der Waals theory
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We show how a van der Waals theory of simple fluids with an interaction potential whose range has a
nonmonotonic density dependence can lead to a liquid-liquid transition in close analogy to recent observations
and simulations.@S1063-651X~98!00104-4#

PACS number~s!: 61.20.Ne, 64.70.Ja, 64.10.1h, 05.70.Ce
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Increasing evidence is being found that some pure s
stances can exhibit a liquid-liquid transition in the metasta
~supercooled! region@1,2#. Such a higher degree of polymo
phism of the disordered phase@3#, while common for mix-
tures@4#, is unexpected for a simple fluid. Indeed, while t
rules of thermodynamics do not exclude the possibility
there being more than two different fluid phases in a sim
fluid, the common experience is to find at most two: a lo
density fluid ~or vapor! phase and a high-density fluid~or
liquid! phase. The presence of a thermodynamically sta
liquid in the phase diagram of a simple fluid is moreover n
a universal feature since its presence is known to stron
depend on the range of the interparticle potential. It is o
when the range of the attractions is sufficiently long co
pared to the range of the repulsions that the liquid becom
thermodynamically stable phase@5#. This whole scenario is
already well described by the simple van der Waals~vdW!
theory of @6#. Here we show moreover that the same vd
theory also predicts the possible existence of a second fl
fluid transition in addition to the usual vapor-liquid transitio
whenever the range of the attractions exhibits a nonmo
tonic density dependence. It is found, however, that, even
long-ranged attractions, this liquid-liquid transition can s
be thermodynamically metastable relative to the fluid-so
transition, in agreement with the expectations of@1,2#.

The vdW theory, although very simple, embodies a qu
tatively correct description of the vapor-liquid transition an
when suitably extended to the solid phase@6#, also of the
complete phase diagram of a pure substance or ‘‘sim
fluid.’’ The Helmholtz free energy per particle at the numb
densityr and temperatureT, f (r,T), can be written as

f ~r,T!5 f id~r,T!2Ts~r,T!1e~r,T!, ~1!

where f id(r,T)5kBT@ ln(rL3)21# is the ideal gas contribu
tion ~kB being Boltzmann’s constant andL the thermal de
Broglie wavelength!, s(r,T) the excess~over ideal! entropy
per particle, ande(r,T) the excess energy per particle. Th
first basic assumption of the vdW theory is to ascribes(r,T)
entirely to the repulsions that when represented by a h
sphere potential lead to the well-known ‘‘covolume’’ expre
sion s(r)5kB ln(12br) for the excess entropy of the flui
phase. Note that this implies that the fluid phase is mech
cally stable only up to the maximum densityr051/b, b
being a constant~here we have usedr050.495/v0 , wherev0
is the hard-sphere volume, a value that, as discussed in d
571063-651X/98/57~4!/4821~3!/$15.00
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in @6#, leads to a reasonable hard-sphere transition!. The sec-
ond basic assumption of the vdW theory ascribes likew
e(r,T) entirely to the attractions that, in the mean-field a
proximation, yield then the well-known ‘‘cohesion energy
expressione(r)5 1

2 r*dr VA(r ) for the excess energy of
fluid phase for which the attractions are described by the
potentialVA(r ). For the systems considered in@1,2# the in-
teraction potential hasanisotropicfeatures and we propose
in a first approximation, to replace it by an average or eff
tive isotropic potential @7#. Such an effective potential, re
sulting, for instance, from preaveraging the anisotropic
tential over the angular degrees of freedom with a dens
dependent angular correlation function, will generally
density dependent, viz.,VA(r ;r) @8#, and the above expres
sion of the cohesion energy of the fluid phase will thus
replaced by

e~r!5
1

2
rE drVA~r ;r![rE~r!, ~2!

whereE(r) contains now all the supplementary density d
pendence introduced byVA(r ;r). The fact thatE(r) is no
longer a constant can eventually have a profound influe
on the phase diagram. For instance, the equations that d
mine the critical point of the fluid phase become now

2a~rc!2~r02rc!a8~rc!50,

r0
2kBTc5~r02rc!

2a~rc!, ~3!

whereTc is the critical temperature,rc is the critical density,
r051/b, the prime indicates a derivative with respect to t
argument, anda(r)[2r@2e8(r)1re9(r)#. WhenE(r) is
a constant,e(r) anda(r) are linear inr, in which case Eq.
~3! has only one solution, the standard vdW vapor-liqu
critical point@namely,rc5r0/3, kBTc528e(r0)/27#. When
E(r) is not a constant, Eq.~3! can eventually have more tha
one ~physical! solution leading hereby to liquid polymor
phism of a degree higher than 2~each additional critical
point introducing an additional liquid phase!. Since little is
known aboutE(r) itself, we work backward and focus di
rectly on Eq.~3! and a(r). In the spirit of a simple virial
correction we tentatively writea(r)522r(12ar)2E(0),
where a is a positive constant so as to enforce a no
monotonic behavior and the square is necessary in orde
4821 © 1998 The American Physical Society
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keep Tc of Eq. ~3! positive @note that for attractionsE(r)
,0#. Integrating the relation betweenE(r) anda(r) yields
then

E~r!5S 12
2

3
ar1

1

6
a2r2DE~0!, ~4!

which when substituted into Eq.~3! leads to two critical
points ~there also is a spurious third solution correspond
to Tc50!. Note thatE(r) has a maximum ofE(0)/3 atar
52. This nonmonotonic variation ofE(r) reflects a non-
monotonic variation of the potential parameters. Indeed,
suming for simplicity an inverse power potential

VA~r ;r!5H 0 ~r ,s!

2eS s

r D n~r!

~r>s!,
~5!

wheree is an amplitude fixing the temperature scale ands
the hard-sphere diameter fixing the density scale, Eqs.~2!
and ~5! yield E(r)52e2ps3/@n(r)23# and Eq.~4! im-
plies

n~r!531
n~0!23

12
2

3
ar1

1

6
a2r2

, ~6!

i.e., a potential indexn(r) that rises from its zero-densit
value n(0) to a maximum value 3@n(0)22# and then de-
creases ton(r0) ~see Fig. 1!. This rise ofn(r) with r has a
destabilizingeffect on the liquid, which splits the liquid
vapor transition into two succesive transitions, each of wh
ends in a separate critical point. In order to keep the phys
parameters of these critical points positive, the value ofa has
to be kept within some ‘‘physical’’ range. For illustrativ
purposes we have chosen herea55v0 .

FIG. 1. Density dependence of the indexn[n(r) of the inverse
power potential of Eq.~5! as obtained from Eq.~6! with a55v0

versus the reduced densityh5rv0 , with v05ps3/6 ands being
the hard-sphere diameter. The three cases shown correspo
~from top to bottom! n(0)53.8, 3.4, and 3.2. Note the pronounce
maximum inn(r) for the largern(0) values.
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FIG. 2. Complete phase diagram~F for fluid, V for vapor,L for
liquid, andS for solid! of a simple fluid in the temperature-densi
plane (t,h), with t5@n(0)23#kBT/e and h5rv0 , for a system
with an effective potential given by Eqs.~5! and ~6! with a
55v0 , as obtained from the present vdW theory. The three ca
shown correspond to~a! n(0)53.8, ~b! n(0)53.4, and~c! n(0)
53.2. The thermodynamically stable coexistencies are drawn
full lines, the metastable coexistencies as dotted lines, the cri
points by full dots, and the vapor-liquid-liquid triple line pass
through the open dot. The number of stable critical points of~a!,
~b!, and ~c! is, respectively, zero, one and two. Note the upwa
‘‘push’’ in the liquid-solid coexistence curve of~a! and ~b! due to
the proximity of the metastable liquid-liquid critical point.
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As is well known, the appearance of loops in the fr
energyf (r,T) of the fluid phase is not a sufficient conditio
for finding fluid-fluid transitions in the system’s phase d
gram. The ultimate thermodynamic stability of these tran
tions still depends crucially on the relative position of t
fluid and solid free energies or, more precisely, on the c
vex envelope to these free energies. To assess the therm
namic stability of the liquid polymorphism induced by E
~6! it is thus essential to consider also the solid phases
the fluid-solid transitions. This can be done by extending
above considerations to the solid phase along the lines
forth in @6#. To this end the excess entropy of Eq.~1! can be
evaluated for the solid phase within a cell-theory approxim
tion ass(r)53kB ln@12(r/rCP)

1/3#, whererCP is the density
at close packing of the crystal structure considered@here a
face-centered-cubic~fcc! structure#, while the excess energ
of Eq. ~1! will be approximated for the solid~see @6# for
details! by the lattice energye(r)5 1

2 ( jVA(r j ;r), wherer j
is the distance of sitej to a site placed at the origin. For th
inverse power potential of Eq.~5! this lattice sum can be
written ase(r)52eaM(n)(r/rCP)

n/3, whereaM(n) is the
fcc Madelung constant for an inverse power potential of
dex n, with heren5n(r) as given by Eq.~6!. The relative
stability of the fluid-fluid, solid-solid, and fluid-solid trans
tions is then seen to be controlled by the only remaining f
parametern(0), which determines the range of the zer
density potentialVA(r ;r50). The crucial role of the range
of the interaction potential in modern liquid state theory w
already emphasized in@5,6#. For instance, in the case whe
n(r) is a constant, viz.,n(r)5n(0), theabove theory indi-
cates that the liquid phase is thermodynamically stable o
for 3,n(0),7.6, while under these circumstances any i
structural solid-solid transition is always metastable~see@6#
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for details!. Here, because of the pronounced maximum
n(r) shown in Fig. 1, the liquid will be metastable unless t
maximum value ofn(r), namely, 3@n(0)22#, satisfies 3
,3@n(0)22#,7.6. Even so we find~the situation depends
still on the value chosen fora, but the present scenario ha
been found for 4.09,a/v0,5.29! that for n(0)53.8 the
two ~vapor-liquid and liquid-liquid! critical points are still
metastable with respect to the fluid-solid transition. With
further decrease ofn(0) the low-density~vapor-liquid! criti-
cal point becomes stable while for very low values ofn(0)
the high-density~liquid-liquid! critical point also can even
tually become stable, introducing then a vapor-liquid-liqu
triple point. For the intermediaten(0) values@n(0).3.5#
the phase diagram obtained here~see Fig. 2! exhibits a strik-
ing similarity to that of@1#. Notice also that the proximity of
the metastable liquid-liquid critical point can be observ
indirectly as producing a bump in the liquid-solid coexis
ence curve~see Fig. 2!.

In conclusion, we have shown how liquid polymorphis
follows from a simple vdW theory for a pure substan
~simple fluid! with a long-ranged pair potential whose ran
exhibits a nonmonotonic density variation. The similarity
the resulting phase behavior to that put forth in@1,2# is strik-
ing, although the liquid polymorphism of the systems co
sidered in@1,2# could of course have a different physic
origin. In particular, the route to liquid polymorphism pu
forth here is purely energetic, while entropic consideratio
can clearly lead to a similar result, as could an interp
between both mechanisms.
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