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Liquid polymorphism of simple fluids within a van der Waals theory
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We show how a van der Waals theory of simple fluids with an interaction potential whose range has a
nonmonotonic density dependence can lead to a liquid-liquid transition in close analogy to recent observations
and simulations[S1063-651X98)00104-4

PACS numbdps): 61.20.Ne, 64.70.Ja, 64.16h, 05.70.Ce

Increasing evidence is being found that some pure sulin [6], leads to a reasonable hard-sphere transitibhe sec-
stances can exhibit a liquid-liquid transition in the metastableond basic assumption of the vdW theory ascribes likewise
(supercoolegregion[1,2]. Such a higher degree of polymor- e(p,T) entirely to the attractions that, in the mean-field ap-
phism of the disordered pha$8], while common for mix-  proximation, yield then the well-known “cohesion energy”
tures[4], is unexpected for a simple fluid. Indeed, while the expressione(p)=3p[dr VA(r) for the excess energy of a
rules of thermodynamics do not exclude the possibility offluid phase for which the attractions are described by the pair
there being more than two different fluid phases in a simplgotentialV4(r). For the systems considered|ib,2] the in-
fluid, the common experience is to find at most two: a low-teraction potential haanisotropicfeatures and we propose,
density fluid (or vapoy phase and a high-density flui@r in a first approximation, to replace it by an average or effec-
liquid) phase. The presence of a thermodynamically stabléve isotropic potential[7]. Such an effective potential, re-
liquid in the phase diagram of a simple fluid is moreover notsulting, for instance, from preaveraging the anisotropic po-
a universal feature since its presence is known to stronglyential over the angular degrees of freedom with a density-
depend on the range of the interparticle potential. It is onlydependent angular correlation function, will generally be
when the range of the attractions is sufficiently long com-density dependent, viz\/(r;p) [8], and the above expres-
pared to the range of the repulsions that the liquid becomession of the cohesion energy of the fluid phase will thus be
thermodynamically stable phagg]. This whole scenario is replaced by
already well described by the simple van der WaakWw)
theory of[6]. Here we show moreover that the same vdW 1
theory also predicts the possible existence of a second fluid- e(p)= EPJ drVa(r;p)=pE(p), (2
fluid transition in addition to the usual vapor-liquid transition
whenever the range of the attractions exhibits a nonmono-

tonic density dependence. It is found, however, that, even fo\therEE(p) contains now all the supplementary density de-

| ) o e . pendence introduced by,(r;p). The fact thatE(p) is no
ll?en%hrearrr]r?c?c(jj ﬁg?&t;%ns}ntgtlgslgg;g L'gllggvgatgsiﬂznﬂi?g_ssg'lIildlonger a constant can eventually have a profound influence
transition inyagreemgnt with the expectationdhe] on the phase diagram. For instance, the equations that deter-

The vdW theory, although very simple, embodies a quali_mme the critical point of the fluid phase become now

tatively correct description of the vapor-liquid transition and,

when suitably extended to the solid phd$a, also of the 2a(pc) = (po=pe)a’(pc) =0,
complete phase diagram of a pure substance or “simple ) )
fluid.” The Helmholtz free energy per particle at the number pokeTc=(po—pc)-alpe), ©)

densityp and temperatur&, f(p,T), can be written as

whereT. is the critical temperature, is the critical density,

f(p,T)=fig(p, T)=Ts(p,T)+e(p,T), (1) po= 1/, the prime indicates a derivative with respect to the

argument, ané(p)=—p[2€e'(p) +p€e”(p)]. WhenE(p) is
where fiy(p, T) =kgT[In(pA%)—1] is the ideal gas contribu- a constante(p) anda(p) are linear inp, in which case Eq.
tion (kg being Boltzmann’s constant antl the thermal de (3) has only one solution, the standard vdW vapor-liquid
Broglie wavelength s(p,T) the excesgover ideal entropy  critical point[namely,p.= po/3, kgT.= — 8e(pg)/27]. When
per particle, ana(p,T) the excess energy per particle. The E(p) is not a constant, Eq43) can eventually have more than
first basic assumption of the vdW theory is to ascsbe, T) one (physica) solution leading hereby to liquid polymor-
entirely to the repulsions that when represented by a hardshism of a degree higher than (ach additional critical
sphere potential lead to the well-known “covolume” expres- point introducing an additional liquid phgseSince little is
sion s(p) =kg In(1—bp) for the excess entropy of the fluid known aboutE(p) itself, we work backward and focus di-
phase. Note that this implies that the fluid phase is mechaniectly on Eq.(3) anda(p). In the spirit of a simple virial
cally stable only up to the maximum densipy=1/b, b correction we tentatively write(p)=—2p(1— ap)?E(0),
being a constar(here we have usee,=0.4950,, wherev,  Where « is a positive constant so as to enforce a non-
is the hard-sphere volume, a value that, as discussed in detailonotonic behavior and the square is necessary in order to
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FIG. 1. Density dependence of the indexn(p) of the inverse
power potential of Eq(5) as obtained from Eq6) with a=5v, 0.54 —
versus the reduced densiiy=pv,, with vo=7c%/6 ando being
the hard-sphere diameter. The three cases shown correspond to
(from top to bottom n(0)=3.8, 3.4, and 3.2. Note the pronounced ¢ 0.48 |
maximum inn(p) for the largemn(0) values. ‘
keep T, of Eq. (3) positive [note that for attraction&(p) 0.49 |
<0]. Integrating the relation betwedf(p) anda(p) yields ’
then
s 1 0.36 I S| S
= 1— —ap+ = a?p? 0.0 0.1 02 03 04 05 06 0.7
E(p)={1 zaptgap E(0), (4) n
which when substituted into Eq3) leads to two critical 0.60 | :
points (there also is a spurious third solution corresponding S
to T.=0). Note thatE(p) has a maximum oE(0)/3 atap |
=2. This nonmonotonic variation dE(p) reflects a non-
monotonic variation of the potential parameters. Indeed, as- 0.48 4
suming for simplicity an inverse power potential
0 (r<o) t i
Va(r;p)= o\ 5 -
Arip) _E(_> (r=0), S 0.36
r
where e is an amplitude fixing the temperature scale and
the hard-sphere diameter fixing the density scale, E2js. 0.24 l I l
and (5) yield E(p)=— e2mo°/[n(p)—3] and Eq.(4) im- 0.0 0.1 02 03 04 05 06 07
plies n
n(0)—3
n(p)=3+ 2 1 ' (6) FIG. 2. Complete phase diagraif for fluid, V for vapor,L for
1- §ap+ gazpz liquid, andS for solid) of a simple fluid in the temperature-density

plane ¢,7), with t=[n(0)—3]kgT/e and n=pv,, for a system
. N . . .. with an effective potential given by Eq$5) and (6) with «
l.e., a potential index(p) that rises from its zero-density =5v,, as obtained from the present vdW theory. The three cases

valuen(0) to a maximum vaIL_Je @1(0)—2] an_d then de-  ghown correspond téa) n(0)=3.8, (b) n(0)=3.4, and(c) n(0)
creases tm(po) (see Fig. 1 This rise ofn(p) with phasa  _35 The thermodynamically stable coexistencies are drawn as
destabilizingeffect on the liquid, which splits the liquid- ) lines, the metastable coexistencies as dotted lines, the critical
vapor transition into two succesive transitions, each of whicthoints by full dots, and the vapor-liquid-liquid triple line passes
ends in a separate critical point. In order to keep the physicahrough the open dot. The number of stable critical pointsanf
parameters of these critical points positive, the value bés  (b), and(c) is, respectively, zero, one and two. Note the upward
to be kept within some “physical” range. For illustrative “push” in the liquid-solid coexistence curve @& and(b) due to
purposes we have chosen here 5v. the proximity of the metastable liquid-liquid critical point.



57 BRIEF REPORTS 4823

As is well known, the appearance of loops in the freefor detaily. Here, because of the pronounced maximum in
energyf(p,T) of the fluid phase is not a sufficient condition n(p) shown in Fig. 1, the liquid will be metastable unless the
for finding fluid-fluid transitions in the system’s phase dia- maximum value ofn(p), namely, 3n(0)—2], satisfies 3
gram. The ultimate thermodynamic stability of these transi-<3[n(0)—2]<7.6. Even so we findthe situation depends
tions still depends crucially on the relative position of thestill on the value chosen fa%, but the present scenario has
fluid and solid free energies or, more precisely, on the conbeen found for 4.08 a/v,<5.29 that for n(0)=3.8 the
vex envelope to these free energies. To assess the thermody0 (vapor-liquid and liquid-liquid critical points are still
namic stability of the liquid polymorphism induced by Eq. Metastable with respect to the fluid-solid transition. With a
(6) it is thus essential to consider also the solid phases aniyrther decrease ai(0) the low-densityvapor-liquid criti-
the fluid-solid transitions. This can be done by extending th&@ Point becomes stable while for very low valuesng0)
above considerations to the solid phase along the lines pdft€ high-densityliquid-liquid) critical point also can even-
forth in [6]. To this end the excess entropy of Etj) can be tually become stable, introducing then a vapor-liquid-liquid
evaluated for the solid phase within a cell-theory approxima—trlple point. For the intermediata(0) values[n(0)=3.5]
tion ass(p) = 3kg IN[1—(plpep) 3], wherepepis the density the phase diagram obtained hésee Fig. 2 exhibits a strik-
at close packing of the crystal structure considdieere a ing similarity to that -01[-1]' Notice also that the proximity of
face-centered-cubigfcc) structurd, while the excess energy _the. metastable I|qU|_d—I|qU|d cr|t|ga| point can bg obseryed
of Eq. (1) will be approximated for the solidsee[6] for indirectly as proléj_ucmg a bump in the liquid-solid coexist-
detaily by the lattice energg(p)=33;Va(r;;p), wherer; encl:r? ggrz\éilss?gn Ivg\]/.e?-have shown how liquid polymorphism
is the distance of sitg¢ to a site placed at the origin. For the foll :

: ol of Ed5) this latii b ows from a simple vdW theory for a pure substance
INVErSe power potential of Ed )nt/3|s attice sum can be (simple fluid with a long-ranged pair potential whose range
written ase(p)=—eay(n)(p/pcp™, whereay(n) is the

. . . exhibits a nonmonotonic density variation. The similarity of
fcc Madglung constant for an inverse power poten'ual_ of inq resulting phase behavior to that put fort1r2] is strik-

dexn, with heren=n(p) as given by Eq(6). The relative 4 " 5though the liquid polymorphism of the systems con-
stability of the fluid-fluid, solid-solid, and fluid-solid transi- sidered in[1,2] could of course have a different physical
tions is then seen to be controlled by the only remaining fre%rigin. In particular, the route to liquid polymorphism put

parametem(0), which (_jetermines the range of the zero-¢qh here is purely energetic, while entropic considerations
density potentiaM(r;p=0). The crucial role of the range g clearly lead to a similar result, as could an interplay
of the interaction potential in modern liquid state theory wasyetween both mechanisms.

already emphasized i15,6]. For instance, in the case where

n(p) is a constant, viz.n(p)=n(0), theabove theory indi- M.B. acknowledges financial support from the Fonds Na-
cates that the liquid phase is thermodynamically stable onlyional de la Recherche Scientifig(®elgium) and C.F.T. that
for 3<n(0)<7.6, while under these circumstances any iso-from the Direccim General de InvestigaaioCientfica y
structural solid-solid transition is always metastafslee[ 6] Tecnica(Spain, Grant No. PB94-0265.
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